488 research outputs found

    Finite temperature properties of quantum Lifshitz transitions between valence bond solid phases: An example of `local' quantum criticality

    Full text link
    We study the finite temperature properties of quantum magnets close to a continuous quantum phase transition between two distinct valence bond solid phases in two spatial dimension. Previous work has shown that such a second order quantum `Lifshitz' transition is described by a free field theory and is hence tractable, but is nevertheless non-trivial. At T>0T>0, we show that while correlation functions of certain operators exhibit ω/T\omega/T scaling, they do not show analogous scaling in space. In particular, in the scaling limit, all such correlators are purely {\em local} in space, although the same correlators at T=0 decay as a power law. This provides a valuable microscopic example of a certain kind of `local' quantum criticality. The local form of the correlations arise from the large density of soft modes present near the transition that are excited by temperature. We calculate exactly the autocorrelation function for such operators in the scaling limit. Going beyond the scaling limit by including irrelevant operators leads to finite spatial correlations which are also obtained

    Current fluctuations near to the 2D superconductor-insulator quantum critical point

    Full text link
    Systems near to quantum critical points show universal scaling in their response functions. We consider whether this scaling is reflected in their fluctuations; namely in current-noise. Naive scaling predicts low-temperature Johnson noise crossing over to noise power Ez/(z+1)\propto E^{z/(z+1)} at strong electric fields. We study this crossover in the metallic state at the 2d z=1 superconductor/insulator quantum critical point. Using a Boltzmann-Langevin approach within a 1/N-expansion, we show that the current noise obeys a scaling form Sj=TΦ[T/Teff(E)]S_j=T \Phi[T/T_{eff}(E)] with TeffET_{eff} \propto \sqrt{E}. We recover Johnson noise in thermal equilibrium and SjES_j \propto \sqrt{E} at strong electric fields. The suppression from free carrier shot noise is due to strong correlations at the critical point. We discuss its interpretation in terms of a diverging carrier charge 1/E\propto 1/\sqrt{E} or as out-of-equilibrium Johnson noise with effective temperature E\propto \sqrt{E}.Comment: 5 page

    Forecasting Stock Time-Series using Data Approximation and Pattern Sequence Similarity

    Get PDF
    Time series analysis is the process of building a model using statistical techniques to represent characteristics of time series data. Processing and forecasting huge time series data is a challenging task. This paper presents Approximation and Prediction of Stock Time-series data (APST), which is a two step approach to predict the direction of change of stock price indices. First, performs data approximation by using the technique called Multilevel Segment Mean (MSM). In second phase, prediction is performed for the approximated data using Euclidian distance and Nearest-Neighbour technique. The computational cost of data approximation is O(n ni) and computational cost of prediction task is O(m |NN|). Thus, the accuracy and the time required for prediction in the proposed method is comparatively efficient than the existing Label Based Forecasting (LBF) method [1].Comment: 11 page

    Supersolid Order from Disorder: Hard-Core Bosons on the Triangular Lattice

    Full text link
    We study the interplay of Mott localization, geometric frustration, and superfluidity for hard-core bosons with nearest-neighbor repulsion on the triangular lattice. For this model at half-filling, we demonstrate that superfluidity survives for arbitrarily large repulsion, and that diagonal solid order emerges in the strongly correlated regime from an order-by-disorder mechanism. This is thus an unusual example of a stable supersolid phase of hard-core lattice bosons at a commensurate filling.Comment: 4 pages, 2 figures; finite-size scaling discussion adde

    On bipartite Rokhsar-Kivelson points and Cantor deconfinement

    Full text link
    Quantum dimer models on bipartite lattices exhibit Rokhsar-Kivelson (RK) points with exactly known critical ground states and deconfined spinons. We examine generic, weak, perturbations around these points. In d=2+1 we find a first order transition between a ``plaquette'' valence bond crystal and a region with a devil's staircase of commensurate and incommensurate valence bond crystals. In the part of the phase diagram where the staircase is incomplete, the incommensurate states exhibit a gapless photon and deconfined spinons on a set of finite measure, almost but not quite a deconfined phase in a compact U(1) gauge theory in d=2+1! In d=3+1 we find a continuous transition between the U(1) resonating valence bond (RVB) phase and a deconfined staggered valence bond crystal. In an appendix we comment on analogous phenomena in quantum vertex models, most notably the existence of a continuous transition on the triangular lattice in d=2+1.Comment: 9 pages; expanded version to appear in Phys. Rev. B; presentation improve

    Noise Correlations of Hard-core Bosons: Quantum Coherence and Symmetry Breaking

    Full text link
    Noise correlations, such as those observable in the time of flight images of a released cloud, are calculated for hard-core bosonic (HCB) atoms. We find that the standard mapping of HCB systems onto spin-1/2 XY models fails in application to computation of noise correlations due to the contribution of multiply occupied virtual states in HCB systems. Such states do not exist in spin models. An interesting manifestation of such states is the breaking of particle-hole symmetry in HCB. We use noise correlations to explore quantum coherence of strongly correlated bosons in the fermionized regime with and without external parabolic confinement. Our analysis points to distinctive new experimental signatures of the Mott phase.Comment: 17 pages, 6 figures. This is a detailed revised version of quant-ph/0507153. It has been submitted to Journal of Physics B: the special edition for the Cortona BEC worksho

    Multi-frequency, Multi-Epoch Study of Mrk 501: Hints for a two-component nature of the emission

    Get PDF
    Since the detection of very high energy (VHE) γ\gamma-rays from Mrk 501, its broad band emission of radiation was mostly and quite effectively modeled using one zone emission scenario. However, broadband spectral and flux variability studies enabled by the multiwavelength campaigns carried out during the recent years have revealed rather complex behavior of Mrk 501. The observed emission from Mrk 501 could be due to a complex superposition of multiple emission zones. Moreover new evidences of detection of very hard intrinsic γ\gamma-ray spectra obtained from {\it Fermi}--LAT observations have challenged the theories about origin of VHE γ\gamma-rays. Our studies based on {\it Fermi}--LAT data indicate the existence of two separate components in the spectrum, one for low energy γ\gamma-rays and the other for high energy γ\gamma-rays. Using multiwaveband data from several ground and space based instruments, in addition to HAGAR data, the spectral energy distribution of Mrk~501 is obtained for various flux states observed during 2011. In the present work, this observed broadband spectral energy distribution is reproduced with a leptonic, multi-zone Synchrotron Self-Compton model.Comment: Published in Astrophysical Journal (ApJ

    Dirac Nodes and Quantized Thermal Hall Effect in the Mixed State of d-wave Superconductors

    Full text link
    We consider the vortex state of d-wave superconductors in the clean limit. Within the linearized approximation the quasiparticle bands obtained are found to posess Dirac cone dispersion (band touchings) at special points in the Brillouin zone. They are protected by a symmetry of the linearized Hamiltonian that we call T_Dirac. Moreover, for vortex lattices that posess inversion symmetry, it is shown that there is always a Dirac cone centered at zero energy within the linearized theory. On going beyond the linearized approximation and including the effect of the smaller curvature terms (that break T_Dirac), the Dirac cone dispersions are found to acquire small gaps (0.5 K/Tesla in YBCO) that scale linearly with the applied magnetic field. When the chemical potential for quasiparticles lies within the gap, quantization of the thermal-Hall conductivity is expected at low temperatures i.e. kappa_{xy}/T = n[(pi k_B)^2/(3h)] with the integer `n' taking on values n=+2, -2, 0. This quantization could be seen in low temperature thermal transport measurements of clean d-wave superconductors with good vortex lattices.Comment: (23 pages in all [7 pages in appendices], 9 figures
    corecore